500网上购彩

  • <tr id='CK55Pb'><strong id='CK55Pb'></strong><small id='CK55Pb'></small><button id='CK55Pb'></button><li id='CK55Pb'><noscript id='CK55Pb'><big id='CK55Pb'></big><dt id='CK55Pb'></dt></noscript></li></tr><ol id='CK55Pb'><option id='CK55Pb'><table id='CK55Pb'><blockquote id='CK55Pb'><tbody id='CK55Pb'></tbody></blockquote></table></option></ol><u id='CK55Pb'></u><kbd id='CK55Pb'><kbd id='CK55Pb'></kbd></kbd>

    <code id='CK55Pb'><strong id='CK55Pb'></strong></code>

    <fieldset id='CK55Pb'></fieldset>
          <span id='CK55Pb'></span>

              <ins id='CK55Pb'></ins>
              <acronym id='CK55Pb'><em id='CK55Pb'></em><td id='CK55Pb'><div id='CK55Pb'></div></td></acronym><address id='CK55Pb'><big id='CK55Pb'><big id='CK55Pb'></big><legend id='CK55Pb'></legend></big></address>

              <i id='CK55Pb'><div id='CK55Pb'><ins id='CK55Pb'></ins></div></i>
              <i id='CK55Pb'></i>
            1. <dl id='CK55Pb'></dl>
              1. <blockquote id='CK55Pb'><q id='CK55Pb'><noscript id='CK55Pb'></noscript><dt id='CK55Pb'></dt></q></blockquote><noframes id='CK55Pb'><i id='CK55Pb'></i>

                Propagation phenomenon in a diffusion system with the Belousov-Zhabotinskii chemical reaction

                发布者:文明办作者:发布时间:2022-09-15浏览次数:10


                主讲人:王智诚 兰州大学教授


                时间:2022年9月16日9:30


                地点:腾讯会议 742 224 834


                举办单位:数理学院


                主讲人介绍:王智诚,兰州大学数学与统计学院教授,博士生√导师。1994年本科毕业于西北师范大学,2007年在兰州大学获理学博士学位。在Trans. AMS、Arch. Rational Mech. Anal.、SIAM J. Math. Anal.、SIAM J. Appl. Math.、JMPA、Calc. Var. PDE、JDE、JDDE、Nonlinearity等杂志发表SCI论文90多篇。2011和2019年分别获得甘肃省自然科学二等奖,主持完成两项国家自然科学基金面上项目以及教育部博士点基金等多项省部级项目,正在←主持一项甘肃省基础研究创新群体项目、一项国家自然科学基金面上项目并参加ζ一项国家自然科学基金重点项目。目前担任两个SCI杂志International  J.  Bifurc. Chaos 和Mathematical Biosciences and Engineering (MBE) 的编委(Associate editor)


                内容介绍:This talk is concerned with propagation phenomena in a diffusion system with the Belousov-Zhabotinskii chemical reaction in high-dimentional space. We first show that the system admits V-shaped traveling fronts in $\R^2$. Then using the V-shaped traveling fronts, we show that there exists a new type of entire solution originated from three moving planar traveling fronts, and evolved to a V-shaped traveling front as time changes. Finally, we show that all the transition fronts of the system in $\R^N$ share the same global mean speed by constructing suitable radially symmetric expanding and retracting sub-super solutions.