彩票下注

  • <tr id='JXiLxl'><strong id='JXiLxl'></strong><small id='JXiLxl'></small><button id='JXiLxl'></button><li id='JXiLxl'><noscript id='JXiLxl'><big id='JXiLxl'></big><dt id='JXiLxl'></dt></noscript></li></tr><ol id='JXiLxl'><option id='JXiLxl'><table id='JXiLxl'><blockquote id='JXiLxl'><tbody id='JXiLxl'></tbody></blockquote></table></option></ol><u id='JXiLxl'></u><kbd id='JXiLxl'><kbd id='JXiLxl'></kbd></kbd>

    <code id='JXiLxl'><strong id='JXiLxl'></strong></code>

    <fieldset id='JXiLxl'></fieldset>
          <span id='JXiLxl'></span>

              <ins id='JXiLxl'></ins>
              <acronym id='JXiLxl'><em id='JXiLxl'></em><td id='JXiLxl'><div id='JXiLxl'></div></td></acronym><address id='JXiLxl'><big id='JXiLxl'><big id='JXiLxl'></big><legend id='JXiLxl'></legend></big></address>

              <i id='JXiLxl'><div id='JXiLxl'><ins id='JXiLxl'></ins></div></i>
              <i id='JXiLxl'></i>
            1. <dl id='JXiLxl'></dl>
              1. <blockquote id='JXiLxl'><q id='JXiLxl'><noscript id='JXiLxl'></noscript><dt id='JXiLxl'></dt></q></blockquote><noframes id='JXiLxl'><i id='JXiLxl'></i>

                Global Analysis of a Viral Infection Model with Cell-to-cell Transmission and Immune Chemokines

                发布者:文明办作者:发布时间:2022-09-08浏览次数:10


                主讲人:汪翔升 路易斯安那大学拉菲特分◇校副教授


                时间:2022年9月12日10:00


                地点:腾讯会议 478 127 447


                举办单位:数理学院


                主讲人介绍:汪翔升, 路易斯安那大学拉菲特分校数学系副教授,博士毕业于香港城市大学和中国科学技术大学联合高等研究中心。曾任职于纽芬兰≡纪念大学和东南密苏里州立大学。研究兴趣包括渐近分析和生物数学等交叉学科领域,最近五年在Adv. Math., J. Differential Equations, J. Math. Biol., J. Math. Pures. Appl., SIAM J. Control Optim.等杂志上发表论文二十余篇。


                内容介绍:We study a viral infection model incorporating both cell-to-cell infection and immune chemokines. Based on experimental results in the literature, we make a basic assumption that the cytotoxic T lymphocytes (CTL) will move toward the location with more infected cells, while the diffusion rate of CTL is a decreasing function of the density of infected cells. We first establish the global existence and ultimate boundedness of the solution via a priori energy estimates. Next, we define the basic reproduction number of viral infection R0 and prove by Lyapunov functional technique and LaSalle invariance principle that the infection-free steady state E0 is globally asymptotically stable if R0<1. When R0>1, then E0 becomes unstable, and another basic reproduction number of CTL response R1 becomes the dynamic threshold in the sense that, if R1<1, then the CTL-inactivated steady state E1 is globally asymptotically stable; and if R1>1, then the CTL-activated steady state E2 is globally asymptotically stable.